Topics in Business Intelligence Lecture 3: Model validation

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Model validation

- In practice always multiple methods to choose from
- For a single method, we also often need to choose parameter values

ightarrow need for model validation

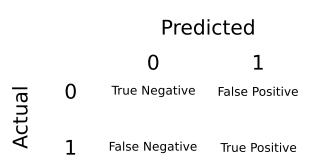
 \rightarrow need for accuracy measures

Accuracy measures (classification)

Probability of making a misclassification error

■ We should perform better than the "Naive classification rule": classify everything to the most prevalent class

Confusion matrix

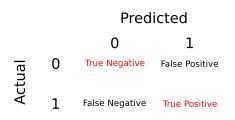


Overall error rate

- Overall error rate = $\frac{FN+FP}{n}$
- If n is reasonably large, the estimation of error rate is good (e.g. misclassification rate 0.05, 99% confidence \rightarrow 3152 cases)

Cafus
ERASMUS UNIVERSITEST ROTTERDAM

Overall accuracy



• Overall accuracy = $\frac{TN+TP}{n}$

Classification cutoff

- Many algorithms use a cutoff for classification probability in deciding the predicted class
- Cutoff value of 0.5 provides the optimal overall accuracy and error rate
- However, sometimes false negatives are more expensive than false positives (or vice versa), and the asymmetric costs should be taken into account (e.g. direct mailing)
- Suppose it is more important to predict membership in class 1 than 0

Cafus
ERASMUS UNIVERSITEIT ROTTERDAM

Sensitivity

- Sensitivity = $\frac{TP}{FN+TP}$
- Ability of the classifier to detect the important class 1 members correctly

CZAFUS ERASMUS UNIVERSITELT ROTTERDAM

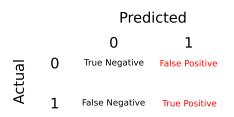
Specificity

■ Specificity =
$$\frac{TN}{FP+TN}$$

Ability to rule out class 0 members correctly

ERASMUS UNIVERSITEIT ROTTERDAN

False positive rate



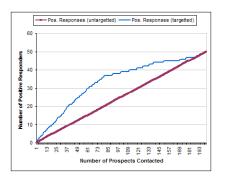
■ False positive rate = $\frac{FP}{FP+TP}$

False negative rate

- False negative rate = $\frac{FN}{FN+TN}$
- Accuracy measures can be plotted against cutoff values to find a value that balances the measure

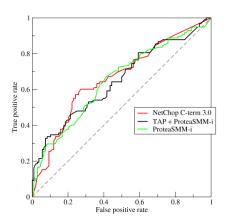
ERAMUS UNIVERSITEIT NOTTERDAM

Lift charts



- Lift chart visualize the cumulative lift (or gain) curve
- x-axis: cumulative number of cases in decreasing probability
- y-axis: cumulative number of true positives (the important class 1)
- Example: construction of a lift chart

ROC Curves



■ True positive rate vs false positive rate

Asymmetric misclassification costs

- Assume our direct mail offer is accepted by 1% of the receivers
- A naive classifier classifies all as nonresponders, and has 1% error rate
- A classifier that would classify 30% of nonresponders as responders and 2% of responders as nonresponders would probably be better
- $lue{}$ ightarrow asymmetric misclassification costs between classes

Asymmetric misclassification costs

	Predict class 1	predict class 0
Actual 1	8	2
Actual 0	20	970

- 2.2% overall error rate
- Assume sending costs 1e, 10e profit from response
 - Send to all \rightarrow loss of 692 euros
 - lacksquare Naive classifier o 0 euros
 - $lue{}$ Use classifier above, send to 28 people ightarrow profit of 60e

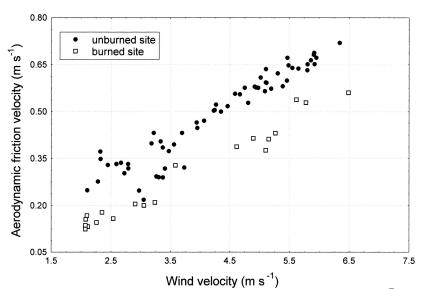
Oversampling for asymmetric costs

Stratified sampling is used to oversample rare cases

 Similarly, we can oversample (sample multiple times, with or without replacement) to affect the classification errors

Consequently the costs are indirectly taken into account

Oversampling



ERASMUS UNIVERSITEST ROTTERDA

Oversampling - model validation

For validating the model with oversampled training:

- Score the model to a validation set that has been selected without oversampling
- Score the model to an oversampled validation set, and reweight the results to remove the effects of oversampling

The first option is always preferred, but not might be feasible due to lack of data

Reweighing oversampled validation set

- \blacksquare Assume 2% response rate, oversampling 25x \rightarrow response of 50%
- Assume confusion matrix:

	Actual 1	Actual 0	Total
Predicted 1	420	110	530
Predicted 0	80	390	470
Total	500	500	1000

• Overall misclassification rate = (80 + 110)/1000 = 19%, and model ends up classifying 53% of the records as 1's

ERASMUS UNIVERSITEIT ROTTERDAM

Reweighing oversampled validation set

■ To reweight to account to the actual number of 0's and 1's in the validation set, we need to add enough 0's to get the original balance (1 : 50), that is

$$500 + 0.98x = x$$

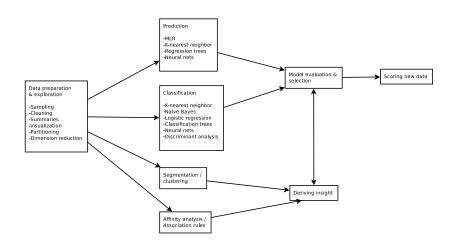
• which yields x = 25000. Now we augment # of actual nonresponders, and get:

	Actual 1	Actual 0	Total
Predicted 1	420	5 390	5 810
Predicted 0	80	19 110	19 190
Total	500	24 500	25000

- lacktriangledown ightarrow adjusted misclassification rate (80+5390)/25000=21.9%
- Model classifies 21.4% of records as 1's.

C a fung

Data mining process



Groups and topics

Group	Topic	Week
Quist et al	k-NN and Naive Bayes'	4
Dijkhoorn et al	Neural nets	4
Clements et al	Logistic regression	5
Breemans et al	Classification trees	6

Note! These 3 lectures have mandatory attendance

