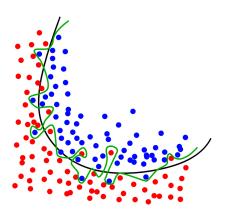
Topics in Business Intelligence Lecture 2: Data reduction

Tommi Tervonen

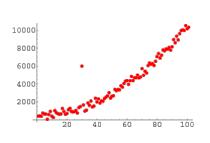
Econometric Institute, Erasmus University Rotterdam

Data mining: preliminary steps


- Data organization
 - Variables in columns, observations in rows
 - In supervised learning, one variable as the response
- Sampling from a database
 - In case of rare events (e.g. customer purchasing a product in response to a mailing), oversample the rare events with or without replacement
- Preprocessing and cleaning the data
- Partitioning the data

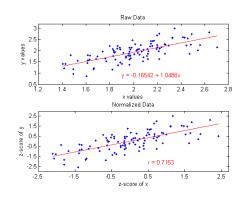
Cafing
ERASMUS UNIVERSITEIT ROTTERDAM

- Classify variables as continuous, integer or nominal
 - Possibly convert numerical variables to nominal (most often response, e.g. credit score above a certain level \rightarrow grant credit)
 - Possibly convert polynomial variables (student, employed, retired) to binomial (student=yes/no, employed=yes/no)
 - Last value of polynomial variables is redundant and should not be used when mapping to binomial


- Select variables (and apply dimension reduction techniques)
 - More variables = greater risk of overfitting

- How many variables and how much data?
- 6 × nr_outcome_classes × nr_variables

- Detect, inspect, and possibly remove outliers
 - Outliers can result from an input error or be part of the data
 - Manual 1-dim outlier detection through sorting in e.g. spreadsheet software
 - Manual 2-dim outlier detection through scatterplots
 - Automatic outlier detection through clustering

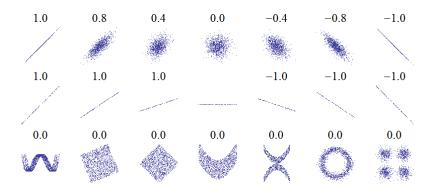


- Missing values
 - If the number of missing values is small, the records can be omitted
 - With a large number of variables even small amount of missing values causes a large amount of records to be omitted (e.g. 30 variables, 5% values missing \rightarrow amount of data retained = 0.95³⁰ = 21.5%).
 - Input a value, e.g. mean (loses variance which is not a problem as we use a separate test dataset)

- Normalize data
 - Some algorithms require normalized data
 - Subtract mean and divide by the standard deviation → z-score, "number of standard deviations away from the mean"

Dimensionality reduction

- Prerequisite for dimensionality reduction is understanding the data, using e.g. data summaries (min, max, avg, mean, median, stdev) and visualization
- Domain knowledge should always be applied first to remove predictors known to be unapplicable (e.g. height for predicting client income)
- Correlation analysis, principal component analysis, and binning



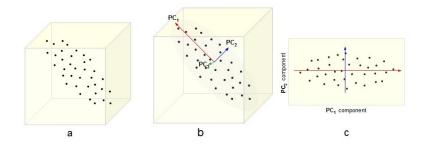
Correlation analysis

- With many variables there is usually overlap in the covered information.
- A simple technique for finding redundancies is to look at the correlation coefficients in a correlation matrix.
- Pairs that have a very strong positive or negative correlation contain a lot of overlap and are subject to removal

Correlation coefficients

Correlation matrix

Correlations	TIMELR	MEDTOR	AVGDON	LSTDON	ANNDON
TIMELR	1.00				
MEDTOR	-0.11	1.00			
AVGDON	-0.36	0.03	1.00		
LSTDON	-0.04	0.09	0.69	1.00	
ANNDON	-0.28	0.01	0.87	0.63	1.00


Cafus
ERASMUS UNIVERSITEIT NOTTENDAM

Principal Component Analysis (PCA)

- Allows to reduces the number of predictors by finding the weighted linear combinations of predictors that retain most of the variance in the data set
- These are called **principal components**
- PCA works only with continuous variables

PCA example

PCs = weighted averages of original variables after subtracting their means

Cafus
ERASMUS UNIVERSITEIT ROTTERDAM

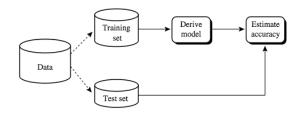
Example principal components

	ξ_1	ξ_2	ξ_3	ξ_4	ξ_5
TIMELR	0.99	0.09	0.06	-0.01	0.00
MEDTOR	-0.19	0.98	-0.01	-0.01	0.00
AVGDON	-0.37	-0.03	0.84	-0.13	0.36
LSTDON	-0.11	0.08	0.79	0.60	-0.02
ANNDON	-0.37	-0.05	0.89	-0.23	-0.07
Percent of Trace:	0.60	0.27	0.11	0.02	0.00

Fail, because data not normalized

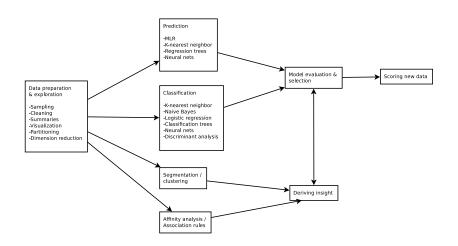
PCA: normalization

- If variables have different scales [min, max], these get reflected in principal components (e.g. MEDTOR [0, 209] and ANNDON [0.19, 759.80])
- If the scales don't reflect importance of the indicator by being commensurable, e.q. sales of jet fuel, sales of heating oil, you should normalize before applying PCA
- Normalization to unit deviation is achieved by dividing each variable by its standard deviation (z-score)


Use of principal components

- Reduce number of variables, use the PCs as predictors in the model. For test set, apply weights from training set to variables to obtain validation "PCs"
- Produce uncorrelated variables (correlation coefficient = 0)
- Describe data

Partition data (if applying supervised learning)


- The derived model can contain bias due to training data matching the model by chance
- The model should always be evaluated/tuned with a separate test set

Sometimes also a third partition, validation set, is used

Data mining process

Next week

- Load training set data into rapid miner
- Perform correlation analysis, decide on which variables to keep
- Make sure you can train your model in rapidminer
- Start reading about your method

