Voortgezet Programmeren

Lecture 1: Elementary concepts in OOP

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/6'/“% ,,,,,,,,,,,,,,

Procedural vs OOP

m Procedural programming: data structures and methods to
operate on them

m Object oriented paradigm: data and related methods are
coupled on the language level

/6'/“4 ,,,,,,,,,,,,,,

function [ret] = subString(str,

ret = ;

for i=startldx:(endldx—1)
ret = concat(ret, str[i]);

end

end

startldx ,

endldx)

public class MyString {
private char[] data;

public MyString(char[] contents) {

data = contents;

}

public MyString subString(start, end) {
char[] carr = new char[end—start];
for (int i=start;i<end;i++) {

carr[i—start] = data[i];

}
return new MyString(carr);

}

public String toString() {
return new String(data);

}
}

Procedural Languages

Computation involres code
operating, on Data

% Code

Dafta

Object-Ornented Languages

An object encapsulates
both code and dafa

Cormputaton inrolres
objects interacting with
each other

Forget everything you know about
programming

Objects and classes

Classes are blueprints for generating classes, the “design”
Objects are instantiations of the classes

Emphasis in OOP is on class design

In program execution, objects communicate with each other
through method calls

In Java: 1 source file = 1 class

/6'/“4 ,,,,,,,,,,,,,,

Class contents

m Attributes for data contents (variant between objects of the
same class)

m Methods for behaviour (e.g. attribute access and
manipulation)

class

r =\
_/ car _1

methods
refuel]) getFuel
setSpeed) getSpeed) I

L\/==\s—

m Java code convention: classes begin with an uppercase letter,
methods and variables with lowercase ones. Multiple words =
camelCasing. L, i

Class declaration: instance variables (attributes)

public class Car {

// maximum speed in km/h
private int maxSpeed;

// current fuel in percentages
private double fuel;

/6'/“% ,,,,,,,,,,,,,,

m Methods are separated to accessor- and mutator methods

m Accessor methods return a value but do not the change state
of the object

m Mutator methods change the state of the object, but do not
return a value

m Not enforced on language level!

Example: accessor- and mutator methods

public class Car {

public void drive(double perc) {
fuel —= perc;

}
public void refuel () {

this.fuel = 100.0;
}

public double getFuel() {
return fuel;

}

public void setSpeed(int newSpeed) {
maxSpeed = newSpeed;

}

public int getSpeed() {
return maxSpeed;

} s

1

m Classes have a special method with a name of the class, that
is called when a new instance is generated

public class Car {

VAr:

x Constructs a new car with given max speed and
x a full tank of fuel.

*
*x ©param maxSpeed maximum speed in km/h
*/
public Car(int maxSpeed) {
this . maxSpeed = maxSpeed;
fuel = 100.0;

/6'/“4 ,,,,,,,,,,,,,,

Car mySeat = new Car(189);

// |'m driving to university , take away fuel
mySeat. drive (1.0);
// Tank

mySeat. refuel ();

System.out.println(‘'‘My seat has currently
+ mySeat.getFuel () + "% fuel”);

public class Car {
// maximum speed in km/h
private int maxSpeed;
// current fuel in percentages
private double fuel;
VAt
x Constructs a new car with given max speed and
x a full tank of fuel.
*
*x @param maxSpeed maximum speed in km/h
*/
public Car(int maxSpeed) {
this.maxSpeed = maxSpeed;
fuel = 100.0;
}
public void refuel () {
this.fuel = 100.0;
}

Code documentation

m Code is not complete without documentation

m Javadoc is a standard way that can be used to automatically
generate documentation in e.g. html

m What you should document:

m methods (always)

m instance variables (if unclear)

m classes (always, to include @author)
m in-line comments (if unclear)

m Method signature describes how to call it, not what it does

public int getSpeed() { ... }

/6'/“4 ,,,,,,,,,,,,,,

Class documentation

Vit
x Models a single car with top speed and fuel.
*

x @author Tommi Tervonen <tervonen@ese.eur.nl>

*/
public class Car {

}

/6'/“% ,,,,,,,,,,,,,,

Method documentation

Vit
x Sets the top speed.
*

x ©Oparam newSpeed new top speed in km/h

*
/
public void setSpeed(int newSpeed) {
maxSpeed = newSpeed;
}
Vit
x Gives the top speed.
*
x @return top speed in km/h
*
/

public int getSpeed() {
return maxSpeed;

} /6'/“4 ,,,,,,,,,,,,,,

Object references

m Computer memory is linear (c.f. LN-TT-22012-1)

m Primitive type variables (int, double, char) are references to
contents: always copied when reassigned

m Object type variables are references to the actual objects:
when copied, only the reference is reassigned

/6'/“4 ,,,,,,,,,,,,,,

public class Course {
private String name;
public Course(String name) {
this .name = name;
}

}

public class Student {
private String name;
private int id;
private Course major;

public Student (String name, int id, Course m) {
this .name = name;
this.id = id;
this. major = m;

On immutability

m String is a standard class in java although it has non-standard
implicit constructor “contents”

m Strings are immutable: once constructed, their contents
cannot change

m Our Car was mutable (setSpeed, drive)

/6'/“4 ,,,,,,,,,,,,,,

Memory allocation and garbage collection

String namel = new String (' 'tommi’");
String name2 = new String(‘'alex'");
name2 = namel;
namel = null;

/6'/“% ,,,,,,,,,,,,,,

Introduction to arrays in Java

m Arrays are special type of objects (with public final attribute
length)

m When allocated, null objects are included
m Arrays are indexed starting from O (until length-1)

m Example: array allocation and traversal with for-loop

/6'/“4 ,,,,,,,,,,,,,,

