
Programming (Econometrics)
Lecture 6: Nonlinear data structures

Tommi Tervonen

Econometric Institute, Erasmus School of Economics

Trees

Trees: definition and implementation in Matlab

1 empty T is a tree

2 if T is not empty, a T has exactly one node designated as the
root(T)

3 the remaining nodes (T − root(T)) of a tree are partitioned
into m disjoint sets T1, . . . ,Tm. Each of these are in turn a
tree, and are called subtrees of T.

Tree arity m defines max amount of subtrees (m = 1→ linked list,
m = 2→ binary tree)

c l a s s d e f t reeNode < h a n d l e
p r o p e r t i e s

key
l e f t
r i g h t

end
end

a− b ∗ (c/d + e/f)

Example: tree traversal schemes; inorder, preorder and postorder

Binary search trees (BST)

6

4 7

1 5 8

BST search time / balanced case

Each level: 1 comparison → 1/2 remaining nodes “discarded”

Find complexity: O(log2 n)

6

4 7

1 5 8

Extremely unbalanced tree

6

7

8

9

BST operation complexity

Insert: O(n) (can be lower in balanced case)

Delete current node: O(1)

Search / balanced case: O(log n)

Search / unbalanced case: O(n)

Heap

Balanced tree: every level of depth x (except last) has exactly
2x nodes

Heap property: the key of each node is maximum that of its
parent

9

7 5

4 6 1

Heap as an array

i th element of j th level is located in the index 2j + (i − 1)

9

7 5

4 6 1

9 7 5 4 6 1

Constructing a heap

When inserting a new node, it becomes:

Last node of the last layer, if there is space

First node of a new layer (depth increases by 1)

⇒ possible violation of the heap property

Complexity?

Deleting from the heap

Only the root node can be deleted

=⇒ priority queue semantics that is very useful in various
cases (e.g. queueing elements that some have always priority
over others)

Elegant data structure with many applications, e.g. Dijkstra’s
shortest path algorithm and Heapsort

Deleting from the heap

The root node is deleted and replaced with the last node

→ heap balanced, but heap property violated

→ heapify(root)

heapify

funct ion H = h e a p i f y (H, n , e n d I n d e x)
l a r g e s t = 0 ;
l = l e f t (n) ;
r = r i g h t (n) ;
i f (l <= e n d I n d e x && H(l) > H(n))

l a r g e s t = l ;
e l s e

l a r g e s t = n ;
end
i f (r <= e n d I n d e x && H(r) > H(l a r g e s t))

l a r g e s t = r ;
end
i f (l a r g e s t != n)

H = swap (H, l a r g e s t , n) ; % pseudo−code
H = h e a p i f y (H, l a r g e s t , e n d I n d e x) ;

end
end

Complexity of heap operations

Insert/delete: O(log n)

Search max: O(1)

Heapsort

Step 1: turning an arbitrary array into a heap

funct ion A = b u i l d H e a p (A)
s = f l o o r (length (A) / 2) ;
whi le (s > 0)

A = h e a p i f y (A, s , length (A)) ;
s = s − 1 ;

end
end

Let’s heapsort [2 3 1 7 4 6]

Complexity of buildHeap

funct ion A = b u i l d H e a p (A)
s = f l o o r (length (A) / 2) ;
whi le (s > 0)

A = h e a p i f y (A, s , length (A)) ;
s = s − 1 ;

end
end

Assuming procedures (which we do not have in Matlab):

n/2 iterations of while-loop

n-node heap has at most dn/2h+1e nodes of height h

heapify with heap of height h is O(h)

⇒
∑blog2 nc

h=0 d n
2h+1 eO(h) = O

(
n
∑blog2 nc

h=0
h
2h

)
= O(n2) = O(n)

Full heapsort

funct ion A = h e a p S o r t (A)
s = length (A) ;
% u n t i l s == 2 , but t h i s i s a s a f e r c o n d i t i o n
whi le (s > 1)
% pseudo−code
A = swap (A, 1 , s) ;
A = h e a p i f y (A, 1 , s) ;
s = s − 1 ;

end
end

Complexity of heapsort

Initial build heap: O(n)

heapSort: n iterations of heapify, each O(log n)

Total: O(n) + O(n log n) = O(n log n)

And does the sorting in place!

