Programming (Econometrics)

Lecture 6: Nonlinear data structures

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/5'/“” ,,,,,,,,,,,,,,

Trees

Root
Level O e
Ancestor of 5
Level 1 e e
Sibling of 9
Parent of 1
Level 2 0
Child of 3
Level 3

Descendant of 9
e Leaf

/5'/“" ,,,,,,,,,,,,,,

Trees: definition and implementation in Matlab

empty T is a tree
if T is not empty, a T has exactly one node designated as the root(T)

the remaining nodes (T — root(T)) of a tree are partitioned into m
disjoint sets Ti,..., Tp,. Each of these are in turn a tree, and are called
subtrees of T.

Tree arity m defines max amount of subtrees (m = 1 — linked list, m =2 —
binary tree)

classdef treeNode < handle
properties
key
left
right
end

end /62“’”

a—bx(c/d+e/f)

Example: tree traversal schemes; inorder, preorder and postorder

Binary search trees (BST)

BST search time / balanced case

m Each level: 1 comparison — 1/2 remaining nodes “discarded”

m Find complexity: O(log, n)

Extremely unbalanced tree

BST operation complexity

m Insert: O(n) (can be lower in balanced case)
m Delete current node: O(1)

m Search / balanced case: O(log n)

m Search / unbalanced case: O(n)

m Balanced tree: every level of depth x (except last) has exactly 2 nodes

m Heap property: the key of each node is maximum that of its parent

Heap as an array

ith element of j® level is located in the index 2/ + (i — 1)

/5'/“” ,,,,,,,,,,,,,,

Constructing a heap

When inserting a new node, it becomes:

m Last node of the last layer, if there is space

m First node of a new layer (depth increases by 1)
= possible violation of the heap property

(c)

Complexity?

Deleting from the heap

m Only the root node can be deleted

= priority queue semantics that is very useful in various cases (e.g.
queueing elements that some have always priority over others)

m Elegant data structure with many applications, e.g. Dijkstra’s shortest
path algorithm and Heapsort

/5'/“" ,,,,,,,,,,,,,,

Deleting from the heap

The root node is deleted and replaced with the last node

— heap balanced, but heap property violated

19
ONO
» OO E

— heapify(root)

heapify

function H = heapify(H, n, endIndex)
largest = 0;
| = left(n)
r = right(n)
if (I <= endIndex && H(I) > H(n))
largest = |;
else
largest = n;
end
if (r <= endIndex && H(r) > H(largest))
largest = r;
end
if (largest != n)
H = swap(H, largest, n); % pseudo—code
H = heapify(H, largest, endlndex);
end
end

Complexity of heap operations

m Insert/delete: O(log n)
m Search max: O(1)

N
s vrLi
a8 ..I.. T rwwi

T W
COR B

Step 1: turning an arbitrary array into a heap

function A = buildHeap (A)
s = floor(length(A)/2);
while (s > 0)
A = heapify (A, s, length(A));
s = s — 1;
end
end

Let's heapsort [23 17 4 6]

‘2‘3‘1‘7‘4 6“2‘3‘6‘7‘4‘1

""""""""

; ; eeeeeeeeeeeeee

Iz|7|6|3|4|1\!7|2|6|3|4|1\
@D/
@ ®

® OO
HERERE

Complexity of buildHeap

function A = buildHeap(A)
s = floor(length(A)/2);
while (s > 0)

A = heapify (A, s, length(A));
s = s — 1;
end
end

Assuming procedures (which we do not have in Matlab):
m n/2 iterations of while-loop
m n-node heap has at most [n/2/*1] nodes of height h
m heapify with heap of height his O(h)

= S 00 = 0 (n i &) = 0(n2) = O(n)

Full heapsort

function A = heapSort(A)

s = length(A);
% until s = 2, but this is a safer condition

while (s > 1)
% pseudo—code
A = swap(A, 1, s);
A = heapify (A, 1, s);
s = s — 1;
end
end

heapify(A, 1, 5)

heapify(A, 1, 4)

/ heapify(
[

O

JCJCIONOXGO

LT e o]

LT C L]

‘1‘2‘3|4‘5‘7‘

Complexity of heapsort

m Initial build heap: O(n)
m heapSort: n iterations of heapify, each O(log n)
m Total: O(n)+ O(nlogn) = O(nlog n)

m And does the sorting in place!

