
Programming (Econometrics)
Lecture 2: Computing

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

What’s the difference?

Stored-program computers

Enable to write, compile, and run code on the same
machine

Implement von Neumann architecture

von Neumann architecture

Numerical representation

Computers have instruction sets (e.g. MOV, MUL, ADD)

Each instruction has a binary opcode

Numbers (integers and reals) are also just sequences of
bits

Standard computers operate with a certain number of bits
(32/64)

We give semantics to the sequences of bits to represent
integers, reals, characters, opcodes, ...

Computational complexity

The only two resources for algorithms are computation time
and memory

Computational complexity refers to their use - how complex is
the algorithm given an input of size n

Complexity theory forms the basis for all computational
sciences

Complexity can be analyzed by counting the amount of
resources used

Example: adding together two integers 12345 and 53766

Insertion sort

2 3 1 5 4

Sort in the way card game players sort their hands

funct ion [a] = i n s e r t i o n S o r t (a)
f o r j =2: length (a)

key = a (j) ;
i = j −1;
whi le i > 0 && a (i) > key

a (i +1) = a (i) ;
i = i −1;

end
a (i +1) = key ;
end

end

Insertion sort: example

With romanian folk dance

Insertion sort: analysis

Assumptions:

We are computing with a single-processor random access
machine

No parallel processing

Instructions are processsed sequentially

The machine has unlimited memory

Insertion sort: analysis

Memory: a constant amount of additional memory (i.e. for
the temporary variables) is used - insertion sort does the
sorting in place

Running time: count the amount of primitive operations
performed

Primitive operations = arithmetic operations,
comparisons, assignments, etc

Exact number of CPU cycles / operation depends on
compiler and hardware

Analyze on more abstract level by counting the amount
of computation steps

1 funct ion [a] = i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key ;

10 end
11 end

Amount of times each line is executed

ci : the cost of executing line i

tj the amount of times the while loop test on line 5 is executed

1 funct ion [a] = i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key ;

10 end
11 end

Line 2 3 4 5 6 7 9

Cost c2 c3 c4 c5 c6 c7 c9

Times n n − 1 n − 1
n∑

j=2

tj

n∑
j=2

(tj − 1)
n∑

j=2

(tj − 1) n − 1

Line 2 3 4 5 6 7 9

Cost c2 c3 c4 c5 c6 c7 c9

Times n n − 1 n − 1
n∑

j=2

tj

n∑
j=2

(tj − 1)
n∑

j=2

(tj − 1) n − 1

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c9(n − 1)

1 funct ion [a] = i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key ;

10 end
11 end

The running time depends on size of the input n and times
the inner loop is executed tj

a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

Best-case running time

T (n) =c2n + c3(n − 1) + c4(n − 1)

+ c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c9(n − 1)

if a(i) ≤ a(j) ∀i < j , i , j ∈ {1, . . . , n} ⇒ tj = 1 ∀j ∈ {1, . . . , n}

⇒ T (n) = c2n + c3(n − 1) + c4(n − 1) + c5(n − 1) + c9(n − 1)

= (c2 + c3 + c4 + c5 + c9)n − (c2 + c4 + c5 + c9)

replace c2 + c3 + c4 + c5 + c9 = a and c2 + c4 + c5 + c9 = b

⇒ T (n) = an + b

1 funct ion [a] = i n s e r t i o n S o r t (a)
2 f o r j =2: length (a)
3 key = a (j) ;
4 i = j −1;
5 whi le i > 0 && a (i) > key
6 a (i +1) = a (i) ;
7 i = i −1;
8 end
9 a (i +1) = key ;

10 end
11 end

If a(i) > a(j) ∀i < j , i , j ∈ {1, . . . , n}

⇒ in every iteration of the while loop the current element a(i)
must be compared with each of the elements in the already sorted
subarray a(1), . . . , a(i − 1), so tj = j ∀j ∈ {2, . . . , n}

T (n) =c2n + c3(n − 1) + c4(n − 1) + c5

n∑
j=2

j

+ c6

n∑
j=2

(j − 1) + c7

n∑
j=2

(j − 1) + c0(n − 1)

note that
n∑

j=2

j =
n(n + 1)

2
− 1 and

n∑
j=2

(j − 1) =
n(n − 1)

2

⇒ T (n) =c2n + c3(n − 1) + c4(n − 1) + c5(
n(n + 1)

2
− 1)

+ (c6 + c7)(
n(n − 1)

2
) + c9(n − 1)

=(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c9)n

− (c3 + c4 + c5 + c9)

Worst-case running time

T (n) =(
c5
2

+
c6
2

+
c7
2

)n2

+ (c2 + c3 + c4 +
c5
2
− c6

2
− c7

2
+ c9)n

− (c3 + c4 + c5 + c9)

replace sets of ci ’s with constants a, b, and c

⇒ T (n) = an2 + bn + c

Analysis: conclusions

Insertion sort

Sorts in place - requires constant amount of memory not
dependent on the input size

Has linear best-case complexity

Has quadratic worst-case complexity

Worst-case analyses

Usually we are interested only in the worst-case complexity, as

It gives us an upper-bound on how bad the algorithm can
perform

Worst-case occurs fairly often with some algorithms

Worst-case can occur with extremely high probability when
input is from real-life processes (e.g. sorting customers)

Algorithms are executed often, so worst case happens almost
surely sometime

Running times with a computer processing 109 ops/s

f(n) 10 100 1000 104 105 106

n 10−8s 10−7s 10−6s 10−5s 10−4s 10−3s

n log n 10−8s 2.4× 10−8s 2.0× 10−6s 3.5× 10−4s 0.1s 56s

n2 10−7s 10−5s 10−3s 0.1s 10s 17min

n3 10−6s 10−3s 1s 17min 12d 32y

2n 10−6s 4.0× 1013y 3.3× 10284y

n! 3.6× 10−3s 3.0× 10141y

Growth of functions

Growth of functions

Asymptotic complexity

Exact analysis as we did before (with ci ’s) is not meaningful -
only asymptotic complexity matters

Given an input size n > n0 , where n0 is some constant value,
how fast does the running time grow?

The asymptotic behaviour of a function depends only on the
highest order term, and not at all of the constants (the c ’s)

big-O notation

For asymptotic worst-case complexity, we use the big-O
notation. Given a function g(n), the set of functions

O(g(n)) = {f (n) : ∃c > 0, n0 > 0 : 0 ≤ f (n) ≤ cg(n) ∀n ≥ n0}

are asymptotically O-equivalent.

O(g(n)) is the
asymptotical upper
bound, that is not
necessary tight

big-O

For example, our previous quadratic complexity
an2 + bn + c ∈ O(n2) , also
3n2 ∈ O(n2) and
mn2 + nlogn ∈ O(n2)

Common complexity classes
O(1)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

About hardness

Any problem with a known algorithm for solving it in
polynomial time (O(g(n)) where g(n) is a polynomial) is
called tractable

Many practical problems are intractable

The most significant unsolved problem in mathematics:
P=NP?

