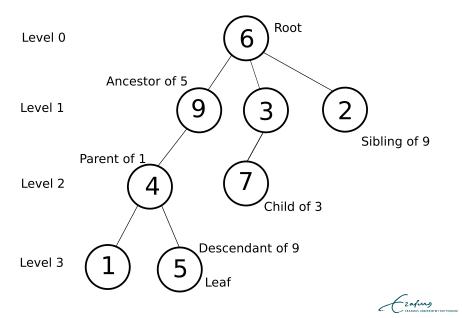
Programmeren (Ectrie)

Lecture 6: Nonlinear data structures

Tommi Tervonen

 ${\bf Econometric\ Institute,\ Erasmus\ University\ Rotterdam}$

Trees



Trees: definition and implementation in Matlab

- empty T is a tree
- 2 if T is not empty, a T has exactly one node designated as the root(T)
- 3 the remaining nodes (T root(T)) of a tree are partitioned into m disjoint sets T_1, \ldots, T_m . Each of these are in turn a tree, and are called subtrees of T.

```
Tree arity m defines max amount of subtrees (m=1 \rightarrow linked list, m=2 \rightarrow binary tree)

classdef treeNode < handle

properties

key

left

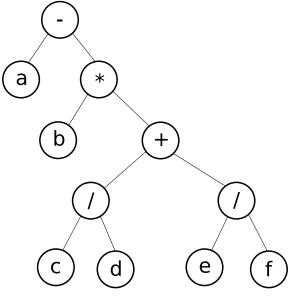
right

end

end
```

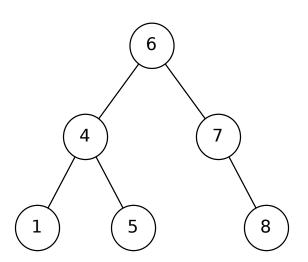
CE OFUS

$$\begin{array}{c} a-b*(c/d+e/f) \\ \hline \\ a \\ \hline \\ b \\ \hline \\ f \\ \end{array}$$



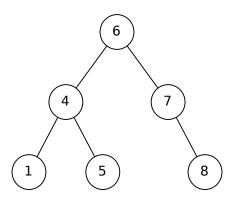
Example: tree traversal schemes; inorder, preorder and postorder

Binary search trees (BST)

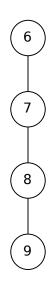


BST search time / balanced case

- Each level: 1 comparison \rightarrow 1/2 remaining nodes "discarded"
- Find complexity: $O(\log_2 n)$



Extremely unbalanced tree

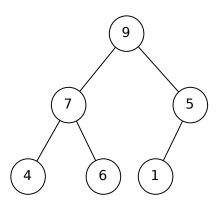


BST operation complexity

- Insert: O(n) (can be lower in balanced case)
- Delete current node: O(1)
- Search / balanced case: $O(\log n)$
- Search / unbalanced case: O(n)

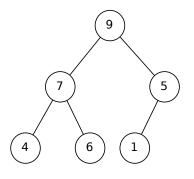
Неар

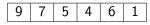
- Balanced tree: every level of depth x (except last) has exactly 2^x nodes
- Heap property: the key of each node is maximum that of its parent



Heap as an array

 i^{th} element of j^{th} level is located in the index $2^{j} + (i-1)$

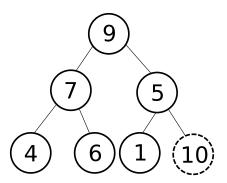


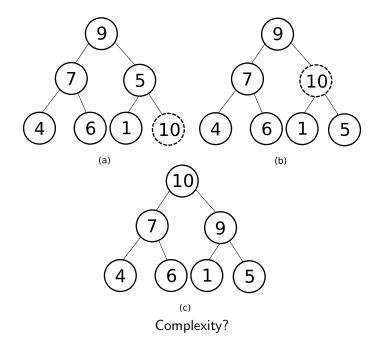


Constructing a heap

When inserting a new node, it becomes:

- Last node of the last layer, if there is space
- First node of a new layer (depth increases by 1)
- ⇒ possible violation of the heap property





Deleting from the heap

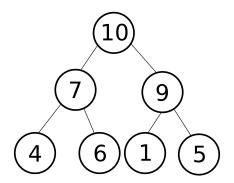
- Only the root node can be deleted
 - ⇒ priority queue semantics that is very useful in various cases (e.g. queueing elements that some have always priority over others)
- Elegant data structure with many applications, e.g. Dijkstra's shortest path algorithm and Heapsort

Cafus
ERASMUS UNIVERSITEIT ROTTERDAM

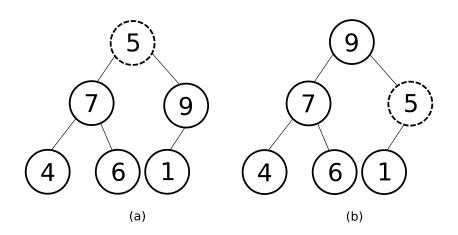
Deleting from the heap

The root node is deleted and replaced with the last node

- → heap balanced, but heap property violated
- $\to \mathsf{heapify}(\mathsf{root})$



heapify

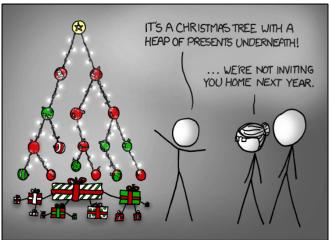



```
function H = heapify(H, n, endIndex)
  largest = 0:
  I = left(n)
  r = right(n)
  if ( | <= endIndex \&\& H( | ) > H( n ) )
    largest = 1:
  else
    largest = n;
  end
  if (r \le endIndex \&\& H(r) > H(largest))
    largest = r;
  end
  if (largest != n)
    H = swap(H, largest, n); \% pseudo-code
    H = heapify(H, largest, endIndex);
  end
end
```

Complexity of heap operations

■ Insert/delete: $O(\log n)$

■ Search max: O(1)

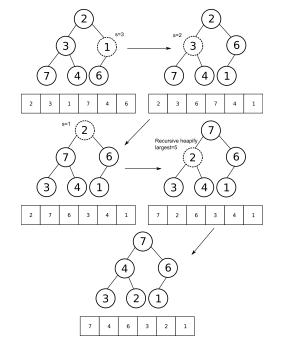


2 afrus

Heapsort

Step 1: turning an arbitrary array into a heap function A = buildHeap(A)s = floor(length(A)/2);while (s > 0)A = heapify(A, s, length(A));s = s - 1: end end Let's heapsort [2 3 1 7 4 6]

CZAFUS ERASMUS UNIVERSITELT ROTTERDAM



Complexity of buildHeap

```
\begin{array}{l} \textbf{function} \ A = \ \textbf{buildHeap}(A) \\ \textbf{s} = \ \textbf{floor}(\ \textbf{length}(A)/2); \\ \textbf{while} \ (s>0) \\ \textbf{A} = \ \textbf{heapify}(A, \ \textbf{s}, \ \textbf{length}(A)); \\ \textbf{s} = \textbf{s} - 1; \\ \textbf{end} \\ \textbf{end} \end{array}
```

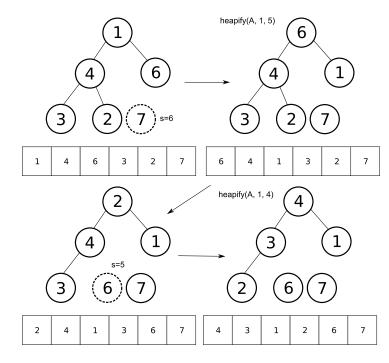
Assuming procedures (which we do not have in Matlab):

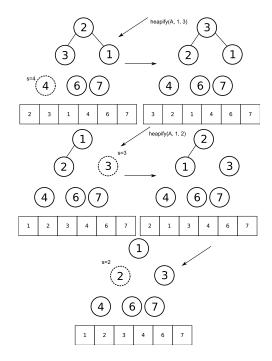
- \blacksquare n/2 iterations of while-loop
- *n*-node heap has at most $\lceil n/2^{h+1} \rceil$ nodes of height *h*
- heapify with heap of height h is O(h)

$$\Rightarrow \sum_{h=0}^{\lfloor \log_2 n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log_2 n \rfloor} \frac{h}{2^h}\right) = O(n2) = O(n)$$

Full heapsort

```
function A = heapSort(A)
  s = length(A);
 % until s = 2, but this is a safer condition
  while (s > 1)
   % pseudo-code
   A = swap(A, 1, s);
   A = heapify(A, 1, s);
    s = s - 1:
  end
end
```



Complexity of heapsort

- Initial build heap: O(n)
- heapSort: n iterations of heapify, each $O(\log n)$
- Total: $O(n) + O(n \log n) = O(n \log n)$
- And does the sorting in place!

