
Programmeren (Ectrie)
Lecture 4: Program correctness

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Counting sum of the elements of an integer array

pub l i c s t a t i c i n t countSum (i n t [] a r r a y) {
f o r (i n t i =1; i<a r r a y . l e n g t h ; i ++) {

a r r a y [i] = a r r a y [i] + a r r a y [i −1] ;
}
return a r r a y [a r r a y . l e n g t h −1] ;

}

Returns the correct value, but also modifies the parameter
array as a side effect.

What would you expect from:

pub l i c s t a t i c i n t countSum (i n t [] a r r a y)

Counting sum of the elements of an integer array

pub l i c s t a t i c i n t countSum (i n t [] a r r a y) {
f o r (i n t i =1; i<a r r a y . l e n g t h ; i ++) {

a r r a y [i] = a r r a y [i] + a r r a y [i −1] ;
}
return a r r a y [a r r a y . l e n g t h −1] ;

}

Returns the correct value, but also modifies the parameter
array as a side effect.

What would you expect from:

pub l i c s t a t i c i n t countSum (i n t [] a r r a y)

Side effects

Unexpected side effects make code difficult to understand

There are also desired side effects, e.g. sorting the contents of
an array

In Java we have

Accessor methods: returning a value but not modifying
contents of the object (public int getAge())

Mutator methods: modifying the contents of the object but
not returning a value (public void setAge(int age))

Functions and procedures

In imperative programming we classify methods into

Functions, that return a value but do not alter the parameters
in any way

Procedures, that alter some of the parameters but do not
return a value

void s e t E l e m e n t (M a t r i x m, i n t r I n d , i n t cInd ,
double newElement)

double getE lement (M a t r i x m, i n t r I n d , i n t c I n d)

Note: if the language does not support exceptions (e.g. C),
procedures often do return a value for signifying error
conditions

Parameter passing schemes

For side effects to be possible, parameters have to be passed
by reference: only a reference (memory address) of the
variable is passed to the called method

Other main technique for parameter passing is to pass by
value: a local copy of the variable is created within the called
method

Example: pass by reference vs pass by value

Parameter passing in Matlab

Matlab passes everything by value

Matrices are passed by references until they are modified the
first time, at which point a local copy is created (!)

The OO-extension allows to pass references by value by using
the handle class

Methods in Matlab

There are no procedures in Matlab: only functions

Pros:

No undesired side effects

Cons:

No desired side effects
Many algorithms can be expressed more clearly with procedures
Recursive algorithms become slow without procedures

funct ion A = so r t (A)
l e f t L i s t = A (1 : m i d d l e) ;
r i g h t L i s t = A((m i d d l e +1): length (A)) ;
l e f t L i s t = so r t (l e f t L i s t) ;
r i g h t L i s t = so r t (r i g h t L i s t) ;
A = merge (l e f t L i s t , r i g h t L i s t) ;

end

Methods in Matlab

There are no procedures in Matlab: only functions

Pros:

No undesired side effects

Cons:

No desired side effects
Many algorithms can be expressed more clearly with procedures
Recursive algorithms become slow without procedures

funct ion A = so r t (A)
l e f t L i s t = A (1 : m i d d l e) ;
r i g h t L i s t = A((m i d d l e +1): length (A)) ;
l e f t L i s t = so r t (l e f t L i s t) ;
r i g h t L i s t = so r t (r i g h t L i s t) ;
A = merge (l e f t L i s t , r i g h t L i s t) ;

end

Programming by contract

Methods define a contract between the supplier (you) and the
consumer (you or someone else)

Contract partially defined through the signature:

funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Contract:

1 The index has to be in the range [1, length(array)]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
array[index] < array[index+1] < ... <

array[length(array)] (responsibility of the supplier)

Programming by contract

Methods define a contract between the supplier (you) and the
consumer (you or someone else)

Contract partially defined through the signature:

funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Contract:

1 The index has to be in the range [1, length(array)]

(responsibility of the consumer)

2 If consumer calls the method adhering to (1), then after the
method call the following holds:
array[index] < array[index+1] < ... <

array[length(array)] (responsibility of the supplier)

Pre- and post-conditions

% S o r t s t he a r r a y i n a s c e n d i n g o r d e r s t a r t i n g
% from i n d e x
%
% PRECOND: 0 < i n d e x <= l e n g t h (a r r a y)
% POSTCOND: a r r (i n d e x) < . . .
% . . . < a r r (l e n g t h (a r r a y))
funct ion a r r = s o r t A r r a y F r o m I n d e x (a r r a y , i n d e x)

Responsibilities of the consumer are method pre-conditions
(“Requires”)

Responsibilities of the supplier are method post-conditions
(“Ensures”)

(PRECOND, METHOD) ⇒ POSTCOND

Violating pre-conditions

As a supplier, if the pre-condition is violated, you are not
responsible for what happens

In practice you should crash the program execution, as the
mistake is in the logic

funct ion a r r a y = s o r t F r o m I n d e x (a r r a y , i n d e x)
a s s e r t (i n d e x > 0 && i n d e x <= length (a r r a y)) ;
. . . % do t he a c t u a l s o r t i n g

end

When to use pre- and post-conditions

If you cannot handle a possible parameter value, you should
declare the accepted range as a pre-conditions

Post-conditions are often stated in a more informal manner in
the method documentations

Document post-conditions when doing more complex
programs, and when you have problems finding bugs

(PRECOND, METHOD) ⇒ POSTCOND

How do we know that METHOD ever terminates execution?
How do we know that METHOD does what it’s supposed to?

Stop or not?

f o r (i =1:10)
p r i n t f (”%d th i n t e g e r \n ” , i) ;

end

nr = input (”How many i n t e g e r s you want ? ”) ;
f o r (i =1: nr)

p r i n t f (”%d th i n t e g e r \n ” , i) ;
s l e e p (10∗ i) ;

end

g r e e n = t r u e ;
whi le (g r e e n)

g r e e n = f a l s e ;
s l e e p (1 0) ;
g r e e n = t r u e ;

end

Alan Turing (1912-54)

Designed the computer that
cracked german Enigma in
WW2

Invented LU decomposition

Invented the Turing test

Proved the following

The halting problem

Given a program x with input i , assume that there is another
program h(x , i):

h(x , i) =

{
1 if x halts with input i

0 otherwise

As we have von Neumann computers (programs = data), we can
also call h(x , x)

The halting problem

Assume arbitrary computable function f

, construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

The halting problem

Assume arbitrary computable function f , construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

The halting problem

Assume arbitrary computable function f , construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

The halting problem

Assume arbitrary computable function f , construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

The halting problem

Assume arbitrary computable function f , construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

The halting problem

Assume arbitrary computable function f , construct function g :

g(i) =

{
0 if f (i , i) = 0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (=⇒ h is defined on e)

g(e) = f (e, e) = 0 =⇒ h(e, e) = 1

g(e) = undefined =⇒ f (e, e) 6= 0 =⇒ h(e, e) = 0

=⇒ h 6= f

=⇒ no such computable function as f

=⇒ the halting problem is undecidable

We cannot algorithmically determine
whether a program stops execution

