Programmeren (Ectrie)

Lecture 4: Program correctness

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

/6'/“% ,,,,,,,,,,,,,,

Counting sum of the elements of an integer array

public static int countSum(int[] array) {
for (int i=1;i<array.length;i++) {
array[i] = array[i] + array[i—1];
}

return array[array.length —1];

}

/6'/“% ,,,,,,,,,,,,,,

Counting sum of the elements of an integer array

public static int countSum(int[] array) {
for (int i=1;i<array.length;i++) {
array[i] = array[i] + array[i—1];
}

return array[array.length —1];

}

m Returns the correct value, but also modifies the parameter
array as a side effect.

m What would you expect from:

public static int countSum(int[] array)

/6'/“4 ,,,,,,,,,,,,,,

Side effects

m Unexpected side effects make code difficult to understand

m There are also desired side effects, e.g. sorting the contents of
an array

m In Java we have

m Accessor methods: returning a value but not modifying
contents of the object (public int getAge())

m Mutator methods: modifying the contents of the object but
not returning a value (public void setAge(int age))

/6'/“4 ,,,,,,,,,,,,,,

Functions and procedures

m In imperative programming we classify methods into

m Functions, that return a value but do not alter the parameters
in any way

m Procedures, that alter some of the parameters but do not
return a value

void setElement(Matrix m, int rind, int clInd,
double newElement)

double getElement(Matrix m, int rind, int cind)

m Note: if the language does not support exceptions (e.g. C),
procedures often do return a value for signifying error

conditions
/6'/‘” ,,,,,,,,,,,,,,

Parameter passing schemes

m For side effects to be possible, parameters have to be passed
by reference: only a reference (memory address) of the
variable is passed to the called method

m Other main technique for parameter passing is to pass by
value: a local copy of the variable is created within the called
method

m Example: pass by reference vs pass by value

/6'/“4 ,,,,,,,,,,,,,,

Parameter passing in Matlab

m Matlab passes everything by value

m Matrices are passed by references until they are modified the
first time, at which point a local copy is created (!)

m The OO-extension allows to pass references by value by using
the handle class

/6'/“4 ,,,,,,,,,,,,,,

Methods in Matlab

There are no procedures in Matlab: only functions

/6'/“% ,,,,,,,,,,,,,,

Methods in Matlab

There are no procedures in Matlab: only functions
m Pros:
m No undesired side effects
m Cons:

m No desired side effects
m Many algorithms can be expressed more clearly with procedures
m Recursive algorithms become slow without procedures

function A = sort(A)
leftList = A(1l: middle);
rightList = A((middle+1):length(A));
leftList = sort(leftList);
rightList = sort(rightlList);
A = merge(leftList , rightlList);
end

/6'/“4 ,,,,,,,,,,,,,,

Programming by contract

m Methods define a contract between the supplier (you) and the
consumer (you or someone else)

m Contract partially defined through the signature:

function arr = sortArrayFromlndex(array, index)

/6'/“4 ,,,,,,,,,,,,,,

Programming by contract

m Methods define a contract between the supplier (you) and the
consumer (you or someone else)

m Contract partially defined through the signature:

function arr = sortArrayFromlndex(array, index)

Contract:
The index has to be in the range [1, length(array)]
(responsibility of the consumer)

If consumer calls the method adhering to (1), then after the
method call the following holds:
arrayl[index] < arrayl[index+1] < ... <
array[length(array)] (responsibility of the supplier)

/6“”“4 ,,,,,,,,,,,,,,

Pre- and post-conditions

% Sorts the array in ascending order starting
% from index

%

% PRECOND: 0 < index <= length(array)

% POSTCOND: arr(index) <

% ... < arr(length(array))

function arr = sortArrayFromlIndex(array, index)

m Responsibilities of the consumer are method pre-conditions
(“Requires”)

m Responsibilities of the supplier are method post-conditions
(“Ensures”)

= (PRECOND, METHOD) = POSTCOND

/6'/“4 ,,,,,,,,,,,,,,

Violating pre-conditions

m As a supplier, if the pre-condition is violated, you are not
responsible for what happens

m In practice you should crash the program execution, as the
mistake is in the logic

function array = sortFromlIndex(array, index)
assert(index > 0 && index <= length(array));
% do the actual sorting
end

/6'/“4 ,,,,,,,,,,,,,,

When to use pre- and post-conditions

m If you cannot handle a possible parameter value, you should
declare the accepted range as a pre-conditions

m Post-conditions are often stated in a more informal manner in
the method documentations

m Document post-conditions when doing more complex
programs, and when you have problems finding bugs

/6'/“4 ,,,,,,,,,,,,,,

(PRECOND, METHOD) = POSTCOND

How do we know that METHOD ever terminates execution?
How do we know that METHOD does what it's supposed to?

Stop or not?

for(i=1:10)
printf("%d th integer\n", i);
end
nr = input(”"How many integers you want?");
for(i=1:nr)
printf("%d th integer\n", i);
sleep (10%1i);
end
green = true;
while (green)
green = false;
sleep(10);
green = true;

end /6“’“‘4 ,,,,,,,,,,,,,,

Alan Turing (1912-54)

m Designed the computer that
cracked german Enigma in
WWwW?2

m Invented LU decomposition
m Invented the Turing test

m Proved the following

/6'/M

The halting problem

Given a program x with input /, assume that there is another
program h(x, i):

h(x, i) 1 if x halts with input /
X, i) = _
0 otherwise

As we have von Neumann computers (programs = data), we can
also call h(x, x)

/6'/“4 ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f

/6'/“% ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f, construct function g:

£(i) = {o if £(i,i) =0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (= h is defined on e)

/6'/“4 ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f, construct function g:
. 0 if f(i,i)=0
g(i) = . .
undefined otherwise

g is computable by a program e that loops forever on the
undefined case (= h is defined on e)

gle)=1f(e,e) =0 = h(e,e) =1
g(e) = undefined — f(e,e) #0 = h(e,e) =0

/6'/“4 ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f, construct function g:

£(i) = {o if £(i,i) =0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (= h is defined on e)

gle)=1f(e,e) =0 = h(e,e) =1
g(e) = undefined — f(e,e) #0 = h(e,e) =0

— h#f

/6'/“4 ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f, construct function g:

£(i) = {o if £(i,i) =0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (= h is defined on e)

gle)=1f(e,e) =0 = h(e,e) =1
g(e) = undefined — f(e,e) #0 = h(e,e) =0

— h#f

= no such computable function as f

/6'/“4 ,,,,,,,,,,,,,,

The halting problem

Assume arbitrary computable function f, construct function g:

£(i) = {o if £(i,i) =0

undefined otherwise

g is computable by a program e that loops forever on the
undefined case (= h is defined on e)

gle)=1f(e,e) =0 = h(e,e) =1
g(e) = undefined — f(e,e) #0 = h(e,e) =0

=— h#f
= no such computable function as f

= the halting problem is undecidable /6‘/“" ,,,,,,,,,,,,,,

We cannot algorithmically determine
whether a program stops execution

