
Programmeren (Ectrie)
Lecture 1: Introduction

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Course learning objectives

After this course, you should be able to:

Program econometrical models in Matlab

Understand core concepts of imperative programming

Explain what happens when your Matlab code is executed

Understand what is an efficient algorithm

Code efficient algorithms in imperative programming
languages

Course organization

7 lectures

Theoretical contents
Provide background for the exercises

14 exercise sessions

7 exercises done in pairs
Come to exercises to ask questions and get help with your code
Due to this being a 2nd year course, 70% attendance is
required

6 question hours

Starting next week
For asking questions about previous week’s exercise (contents
and grading)
TAs available at H10-13 during the question hours

Study load

4 ECTS = 112h

7 lectures = 14h

14 exercise sessions = 28h

6 question hours = 6h

Exam = 4h

⇒ Independent programming 60h = 7,5h/w

Grading

Exercises: 50% (first 5%, then 7.5% each)

Done in pairs (can also be done individually)
Exercises will be published in BB after Monday’s lecture
Strict deadline on Fridays @ 23.59
Submission via BB: only the source file(s) in the root of a zip.
Include a comment in the beginning with your name(s) and
student number(s)

Written exam: 50%

Essay questions

Making the exercises

boolean done=f a l s e ;
boolean u n d e r s t o o d=f a l s e ;
whi le (! u n d e r s t o o d) {

u n d e r s t o o d = readLN ()
&& r e a d E x e r c i s e () ;

}
whi le (! done) {

done = code () ;
i f (! done) {

g e t H e l p () ;
}

}

Help! I can’t code!

1 Read exercise & LN

2 Go to exercise sessions and get help

3 Code @ home

4 Get frustrated

5 Go to exercise sessions and get help

6 Code @ home

7 Get frustrated

8 Get help from BlackBoard forums

9 Code @ home

10 Get frustrated

11 Send Tommi email with topic [FEB22012] Help!

Plagiarism

Do not submit anything you haven’t written yourself

Do not submit anything that is not your idea

The teaching assistants will not give you answers in the
tutorials: they will merely help you find the answer

“But I could’ve solved this problem myself, it was just faster
to google the solution”

Course staff

Tommi Tervonen Lectures H11-26 All
Carlijn Liqui Lung Exercises H10-13 ET01/ET02
Ronald van Bezu Exercises H10-13 ET01/SCH/RCDV
Jim van Mechelen Exercises H10-13 ET02/SCH/RCDV
Olivier Vijfvinkel Exercises H10-13 ET01/ET02/SCH/RCDV

Also: you! Participate in course discussion forums in BB to
get and provide help with the exercises

Required knowledge

Inleiding programmeren:

Variables and methods

Program flow

Decisions and branching

Control structures

Bitwise operators

Arithmetic operators

Scoping

Course contents

L1 Introduction

Practicalities
Programming paradigms
Scripting languages
Introduction to types

L2 Computing

Numerical representation
Introduction to complexity theory
Insertion sort

L3 Memory organization

Matrix representation
Matrix multiplication

Course contents

L4 Program correctness

Side effects
Pre- and post-conditions
Loop invariants

L5 Linear data structures

Arrays, stacks and queues
Linked lists

L6 Nonlinear data structures

Trees
Heap
Heapsort

L7 Sorting & searching

Mergesort
Quick sort
Binary search

Literature

LN-TT-22012-2, available @
http://smaa.fi/tommi/courses/prog2/ and in print
version from the student association, loosely based on a very
selected set of material from:

Knuth: The Art of Computer Programming (vols 1-3)
Cormen, Leicerson, Rivest: Introduction to Algorithms
Goulb, van Loan: Matrix Computations
Wikipedia

Matlab book can be useful to own

All course material is posted in
http://smaa.fi/tommi/courses/prog2/, and links to
exercises also in BB

http://smaa.fi/tommi/courses/prog2/
http://smaa.fi/tommi/courses/prog2/

Software

The exercise sessions will be guided with Matlab

You can do most of the exercises with R, Python, or even
Octave (though visualization in Octave sucks)

Other courses require “fluency” in Matlab

Q?

“The competent programmer is fully aware of the strictly limited
size of his own skull; therefore he approaches the programming

task in full humility, and among other things he avoids clever tricks
like the plague.”

E.W. Dijkstra

Programming paradigms

Programming paradigms refer to the philosophy behind
designing programming languages

When you know to program with 1 language of a paradigm,
others of the same paradigm are easy to learn (mostly just
syntax)

Programming paradigms

1 Procedural / imperative paradigm (C, Pascal, Matlab, R,
Fortran, Algol, Python)

2 Object-oriented paradigm (Java, Smalltalk, C++ partially)

3 Declarative paradigm, including

Functional programming (ML, Lisp, Haskell, Erlang, Scala,
Scheme)
Logic programming (Prolog)

OO vs Procedural

Object-oriented Procedural

Design classes that communicate Design global methods
Abstract Data Types Data structures

Suitable for large programs For “small” programs
Access control in language Programmer has full access

Both are part of imperative paradigm: control flow consists of
statements that change the state of the program

x = 2;

Imperative paradigm makes program correctness hard to
prove, as x = 2 6= x ← 2

Compilation of languages

Before source code can be executed, it needs to be compiled
into an executable format

The compilation can be made

1 Completely in advance to a binary executable (fast)
2 Partially in advance to bytecode to be executed in a virtual

machine (Java, quite fast and portable)
3 Run-time (slow but allows easy “modify & execute” cycles)

Fully compiled languages (e.g. C)

Bytecode compiled languages (e.g. Java)

Runtime compiled languages (e.g. Matlab)

Scripting languages

In scripting languages the instructions are compiled run-time
into execution statements

Slow, as less optimization can be made

In languages of statistical / scientific computation, you have
to understand what happens “under the hood” to make
efficient and correct code

Introduction to types

Typing systems form the core of programming languages -
they allow construction of abstractions

Differences in electric currency → bits → numbers →
characters → objects

Strong and weak typing

Strong typing: each variable has a type associated with it

i n t x = 2 ; // ok
x = 3 ; // ok
x = ‘ ‘ s ’ ’ ; // e r r o r

Weak typing : a single variable can be assigned varying types of
values

y = 3 ; % ok − no type d e c l a r a t i o n r e q u i r e d
y = ’ t ’ ; % ok

Typing in Matlab

Matlab is a weakly typed language, and the following are valid
expressions:

x = 1 ;
y = ’ 1 ’ ;
z = x + y ;

Now z = ?

Next

Get your copy of LN from student association

Check the first exercise in the course page

Make sure you understand the exercise

Familiarize yourself with Matlab

... and get coding!

