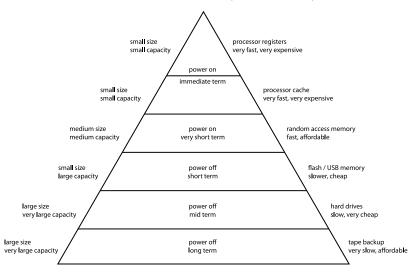
Programmeren (Ectrie) Lecture 3: Memory organization

Tommi Tervonen

Econometric Institute, Erasmus University Rotterdam

Computer Memory Hierarchy



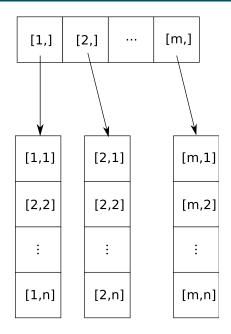
- Local variables such as loop counters can possibly be stored in registers
- All larger data structures have to be allocated to the main memory
- The random access memory is linear and addressed using integers pointing out the location (e.g. 0x400345CF)

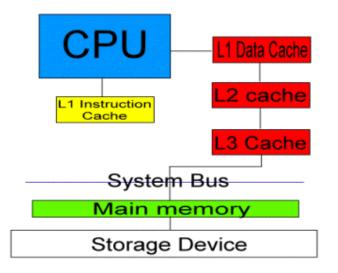
 Due to many algorithms being representable as matrix operations, matrices are included in Matlab as a built-in data type

■ now *c* =?

• How do we represent $m \times n$ matrices?

Matrix representations: naive





■ As the memory is linear, let's exploit that and store the element [*a*, *b*] in index [(*a* − 1) * *b* + *n*]

1	2		n	(n+1)	(n+2)		(m*n)
---	---	--	---	-------	-------	--	-------

- This is called the row-major representation; in column-major one [a, b] is in [(b - 1) * m + a]
- In most programming languages the array indices start from 0 and the formulas are simpler

$$\left[\begin{array}{rrrr}1&2&3\\4&5&6\end{array}\right]$$

- As row-major: [1 2 3 4 5 6]
- As column-major: [1 4 2 5 3 6]

If the matrix if *sparse*, i.e. it contains only a few elements, it is more efficient to store only the non-zero elements

■ E.g.

Γ	0	0	0	0	0]	
	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
L	1	0	0	0	0]	

■ Can be represented with ([3, 4, 2], [5, 1, 1])

Special matrices: diagonal and identity

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

■ Can be represented with [1, 3, 2, 7, 4]

 $\blacksquare = I_5$ and can be represented with a single integer 5

Matrix multiplication: naive

Complexity?

Matrix multiplication: divide-and-conquer

- Assume that we are multiplying n × n matrices, where n is a power of 2
- Express C = AB as

$$\begin{bmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{bmatrix} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix}$$

that comes down to computing

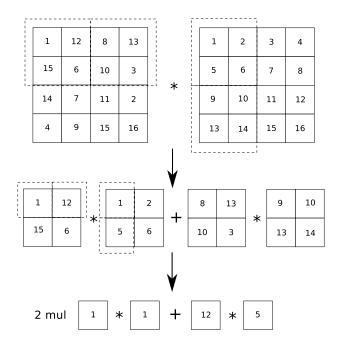
$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

$$C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{1,2}$$

$$C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$$

$$C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$$

 \blacksquare Proceed recursively until you multiply matrices of max size 1×1



Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

= $n^{2} + 8((n/2)^{2} + 8T(n/4))$
= $n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$
= $n^{2} + 2n^{2} + 4n^{2} + 8T(n/16)))$

Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

= $n^{2} + 8((n/2)^{2} + 8T(n/4))$
= $n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$
= $n^{2} + 2n^{2} + 4n^{2} + 8T(n/16)))$

 i^{th} term in the series is $2^{i-1}n^2$

Complexity of divide-and-conquer multiplication

$$T(n) = 8T(n/2) + n^{2}$$

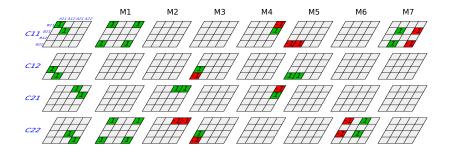
= $n^{2} + 8((n/2)^{2} + 8T(n/4))$
= $n^{2} + 8((n/2)^{2} + 8((n/4)^{2} + 8T(n/16)))$
= $n^{2} + 2n^{2} + 4n^{2} + 8T(n/16)))$

 i^{th} term in the series is $2^{i-1}n^2$

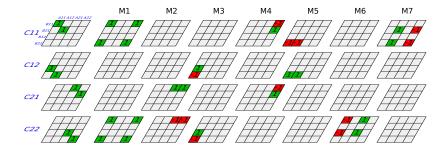
$$T(n) = n^{2} + 2n^{2} + 4n^{2} + \dots + 2^{\log_{2} n} O(1)$$

= $n^{2} \sum_{i=0}^{\log_{2} n} 2^{i} + O(n^{\log_{2} 2})$
= $n^{2} \frac{2^{\log_{2}(n+1)} - 1}{2 - 1} + O(n)$
 $\leq n^{2} O(2^{\log_{2} n}) + O(n) = n^{2} O(n) + O(n)$
= $O(n^{3})$

Strassen's idea



Strassen's idea



Now we only need to do 7 multiplications, so the complexity becomes

$$T(n) = 7T(n/2) + O(n^2)$$

= $O(n^{\log_2 7}) \approx O(n^{2.81})$

- Matrices and arrays are static data structures in the sense that although accessing an arbitrary element is efficient, adding an element is not
- Example: add an element into an array

For *n* elements

- Add element: O(n)
- Random access: O(1)
- Delete element: O(n)

Additionally, for $n \times n$ matrices:

- Multiplication: O(n³) (?)
- Inversion: as multiplication
- Determinant: O(n³) with LU decomposition

