
Programmeren (FEB22012)

Exercise 2

Deadline for submission: 2011-09-04 23:59 CET

Introduction to Newton’s method

In this exercise you will implement an algorithm that finds the root (intersec-
tion with the x axis) of functions. Because each equation can be reduced to a
‘find the root of a function’ problem, this algorithm can be used to numerically
solve equations that are analytically unsolvable. The method that will be im-
plemented is called Newton’s method. In this section, we will briefly discuss the
method and its limitations.

Basics

The basic idea of the method is that one starts with an initial guess (e.g., x0)
that is likely to be close to the true root of the function. Using this starting
point x0, the next point x1 is the root of the tangent line at x0. At this point
you might want to look at the animation in [1] to get a basic idea on how the
method works.

More formally, if f(x) is a real differentiable function, then the relationship
between a current point xn and the next point xn+1 can be expressed in terms
of the derivative of the function:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

In this equation, xn+1 is the root of the line that is tangent with f at point x0.
Using Equation 1, we can compute a series of solutions that approximate

the true root of the function. The precision of the solution can be determined
by setting a threshold for the algorithm. This threshold determines how much a
solution needs to change from one iteration to another in order for the algorithm
to continue. This can be either applied to the roots (the x values) or the corre-
sponding y values (the values of f(xn). For example, if the algorithm reaches a
point where y is smaller than 0.0000001, one can decide to stop iterating.

1



Exercise

1. Without writing any Matlab code, manually apply Newton’s method for
the problem x2 = 777. Start with an initial guess x0 = 25. Create a table
in a text file where you show the iteration number, x, f(x), and the error,
i.e., the difference between the computed value and the true value (in this
case f(x)− 777). So the first line will look something like:

iter. x f(x) error

0 25 625 -152

You need to add three more iterations to this table. You may use a
calculator to do the computations.

2. Implement Newton’s method in Matlab. The implementation should be
well documented and easily applicable to other problems. The imple-
mentation of the method that starts Newton’s method should meet these
requirements:

• Any ‘normalized form’ function can be passed. This function takes
one argument as input and returns exactly one value. For example,
for x2 = 777 one would pass the function f(x) = x2 − 777. The
part where the logic for Newton’s Method is implemented should
be independent of the chosen function. You can pass a function to
another function by preceding it with an ‘at sign’, e.g., @funcName if
the function is called funcName.

• A threshold δ for the root value can be passed. This value indicates
when the iterations should stop. For example, if δ = 0.01, then the
algorithm should stop after it found a solution for which f(x) < 0.01.

• A threshold N that defines the maximum number of iterations can be
passed. This means that the algorithm should stop when f(xn) < δ
or n > N .

• The implementation should return a struct that contains the best
solution x∗, i.e., for which f(x∗) is the smallest, the value f(x∗), and
the number of iterations it took to complete. Look for struct in the
Matlab documentation to see example uses and explanation.

You can use an approximation for the implementation of the derivative.
In other words, you can use the following equation:

f ′(x) =
f(x+ d)− f(x)

d
(2)

where d is relatively small (e.g., d = 1× 10−10).

3. Now you are going to add another feature to the implementation. Add
the possibility to pass a parameter p with range [0,∞]. If p is not equal to

2



zero, the implementation needs to print information on the screen about
each iteration. The value of p then represents the number of decimals
that should be used for the printing of fractional numbers. A table like
the following should be printed if p > 0:

iter. x f(x)

0 .. ..

1 .. ..

The values in the columns x and f(x) should be printed with p decimals.
The printing of the table in this way can be achieved using the fprintf

function. Read the documentation in Matlab for more information on how
to space the columns using equal distances and print values with a certain
amount of decimals.

4. Using the above implementation, we are going to analyse the behaviour
of Newton’s Method by plotting the iteration results. Create a function
which creates a plot of the different f(x) values for each iteration. You
have to modify the previous implementation such that it also returns the
‘per iteration information’, currently it returns a struct containing three
values (the best solution x∗, the value f(x∗), and the number of iterations).
It is up to you how you return this information. The plot should show on
the x axis the iteration number and on the y axis the f(x) value. A few
tips:

• you can use the function plot, you can make the point size larger by
using plot(..., ‘.k’,‘MarkerSize’,15) as option arguments;

• look at the size function in Matlab in order to determine the size of
a matrix and/or vector;

• with 1:10 you generate a vector that contains integers from 1 to 10
(inclusive).

References

[1] Wikipedia. Animation of newton’s method. online. http://upload.

wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif.

3

http://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif
http://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif

