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Most software for Multi-Criteria Decision Analysis (MCDA) implement a small set of compatible methods
as a closed monolithic program. With such software tools, the decision models have to be input by hand. In
some applications, however, the model can be generated using external information sources, and thus it would
be beneficial if the MCDA software could integrate in the comprehensive information infrastructure. This
paper motivates for the need of model generation in the methodological context of Stochastic Multicriteria
Acceptability Analysis (SMAA), and describes the JSMAA software that implements SMAA-2, SMAA-O and
SMAA-TRI methods. JSMAA is open source and divided in separate graphical user interface and library
components, enabling its use in systems with a model generation subsystem.
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1. Introduction

Multiple Criteria Decision Analysis/Aiding (MCDA, also referred to as -Making, MCDM) con-
siders decision problems in which several decision alternatives are evaluated in terms of multiple
criteria. The evaluation is done in order to either choose the best/small subset of alternatives,
to rank them, or to sort them into ordered categories (Roy 1996). Although the amount of
published MCDA applications has increased substantially in the past 15 years (Wallenius et al.
2008), the impact of decision support systems (including implementation of MCDA) in manage-
rial practice has not (Keen and Sol 2008). For a comprehensive list of decision support systems,
see Weistroffer et al. (2005). There are various possible reasons for the lack of impact, including
the following:

(1) The scientific MCDA community has produced a vast amount of useful analytical methods,
but a majority of them are not supported by software providing a usable interface between
the user and the decision support technology, let alone be used in real-life decision processes
(our definition of usefulness, usability, and usage is similar to Keen and Sol 2008). Most
of the MCDA software tools implement a single method or a small set of similar methods
(French and Xu 2005, Belton and Hodgkin 1999). The software is often developed in an
academic environment, is closed source, and requires a license for full use (Weistroffer
et al. 2005). So, the licensing model is often commercial, but the development status
“experimental” and features provided by the software are limited.

(2) The reported real-life use of MCDA methods appears mainly in disciplines where models
can be constructed and calculated manually or with a general purpose software, e.g. in
location (cf. Nickel et al. 2005) or in financial decision making (cf. Spronk et al. 2005).
The limited practical application of MCDA in new disciplines can be due to difficulty
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of integrating existing MCDA software with rest of the decision support technology (e.g.
simulation models (Law and Kelton 1999) or geographic information systems (Malczewski
1999)). Even when artificial intelligence techniques are applied, the decision support sys-
tem is often monolithic (Siskos and Spyridakos 1999).

The use cases and software of MCDA have previously been considered by French and Xu
(2005) and Belton and Hodgkin (1999). They defined multi-criteria problems as one-off decisions
where the decision making process starts with a construction of a model and terminates with
an evaluation of the decision (the process can be iterative). Although one-off decision problems
occur often in practice, there are also repeated decision contexts, such as ranking of suppliers or
universities, that can be supported through a MCDA subsystem with a model generation module.
We distinguish the terms model generation and model construction. Construction is defined as
a manual process, whereas generation refers to an automated one. This paper motivates for the
need of more modular MCDA software components and describes one such implementation that
enables model generation. The need for such software is considered in the methodological context
of Stochastic Multicriteria Acceptability Analysis (SMAA).

SMAA is a family of MCDA methods for all MCDA problem statements (Tervonen and
Figueira 2008). The methods are based on inverse parameter space analysis through Monte Carlo
simulation. The different SMAA methods allow tackling problems with uncertain, imprecise, and
(partially) incomplete information about the preferences, the technical parameters, and the cri-
teria measurements. Incomplete information means that the value is missing, whereas imprecise
information means that the value is present but not with the required precision. Uncertainty
takes into account the observer, who is assumed to give complete and precise information, but is
unreliable itself (Smets 1991). From the technical point of view, the SMAA methods handle all
three types of ignorance about the parameter values in a similar way through probability distri-
butions or as ordinal information. In practice the SMAA methods cannot be calculated manually
due to the use of simulation; a software implementation is required. This paper describes the
first stable SMAA software, JSMAA, that currently implements the SMAA-2, SMAA-O and
SMAA-TRI methods. JSMAA is developed in Java and licensed under open source (for more
information about the open source development model, see e.g. Lakhani and von Hippel 2003)
GNU General Public License v3, and can help to mitigate the problems described before by
enabling model generation.

Section 2 introduces the reader to the SMAA methods implemented in JSMAA. An example
application of drug benefit-risk analysis with model generation is presented in Section 3. The
JSMAA software is presented in Section 4. Section 5 concludes with discussion of alternative
ways of designing modular MCDA software.

2. SMAA methodolody

SMAA methods consider a discrete decision-making problem where of a set of m alternatives
X = {x1, . . . , xi, . . . , xm} are evaluated on the basis of a set of n criteria {g1, . . . , gj , . . . , gn}. The
evaluation of alternative xi on criterion gj is denoted by gj(xi). The core idea in SMAA methods
is to compute descriptive measures based on multidimensional integrals over stochastic parameter
spaces. We will here describe the SMAA-2 and SMAA-TRI methods, and SMAA-O for handling
ordinal criteria measurements with value theory. For full description of the methodology, see
Tervonen and Figueira (2008), and for the actual algorithms, Tervonen and Lahdelma (2007).
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Figure 1. The feasible weight space of a 3-criteria problem.

2.1. SMAA-2

The SMAA-2 (Lahdelma and Salminen 2001) is for ranking the m alternatives. It considers a
preference structure representable with an individual weight vector w and a real-valued utility
or value function u(xi, w), i = 1, . . . ,m. The most commonly used value function is the linear
one:

u(xi, w) =

n∑
j=1

uj(gj(xi))wj , (1)

where uj(·) are the partial value functions (Belton and Stewart 2002). The weights are considered
to be non-negative and normalized, therefore defining the feasible weight space:

W =

{
w ∈ Rn : wj ≥ 0 and

n∑
j=1

wj = 1

}
. (2)

The feasible weight space of a 3-criteria problem with no preference information is illustrated in
Figure 1.

The SMAA methods are developed for situations where neither criteria values nor weights or
other parameters of the model are precisely known (Tervonen and Figueira 2008). Uncertain
or imprecise criteria values are represented by stochastic variables ξij (corresponding to the
deterministic evaluations gj(xi)) with assumed or estimated joint probability function distribu-
tion and density function fχ(ξ) in the space χ ⊆ Rm×n. Similarly, the Decision Maker (DM)s
unknown or partially known preferences are represented by a weight distribution with a joint
density function fW (w) in the feasible weight space W . Total lack of preference information on
the weights is represented by a uniform weight distribution in W , that is:

fW (w) = 1/vol(W ). (3)

The SMAA-2 introduces three such measures: the rank acceptability index, the central weight
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vector, and the confidence factor. For this purpose, a ranking function is defined as follows:

rank(i, ξ, w) = 1 +

m∑
k=1

ρ

(
u(ξk, w) > u(ξi, w)

)
, (4)

where ρ(true) = 1 and ρ(false) = 0. Let us also define the sets of favourable rank weights W r
i (ξ)

as follows,

W r
i (ξ) = {w ∈W : rank(i, ξ, w) = r}. (5)

2.1.1. Rank acceptability index

The rank acceptability index bri describes the share of parameter values granting alternative
xi rank r. It is computed as a multidimensional integral over the criteria distributions and the
favourable rank weights as follows,

bri =

∫
ξ∈χ

fχ(ξ)

∫
w∈W r

i (ξ)
fW (w) dw dξ. (6)

The most acceptable (best) alternatives are those with high acceptabilities for the best ranks.
Evidently, the rank acceptability indices are within the range [0,1], where 0 indicates that the
alternative will never obtain a given rank and 1 indicates that it will obtain the given rank
always with any choice of weights.

2.1.2. Central weight vector

The central weight vector wci is defined as the expected center of gravity of the favourable
weight space. It is computed as a multidimensional integral over the criteria and weight distri-
butions as

wci =

∫
ξ∈χ

fχ(ξ)

∫
w∈W 1

i (ξ)
fW (w)w dw dξ/b1i . (7)

The central weight vector describes the preferences of a typical DM supporting this alternative
with the assumed preference model. By presenting the central weight vectors to the DMs, an
inverse approach for decision support can be applied: instead of eliciting preferences and building
a solution to the problem, the DMs can learn what kind of preferences lead into which alternatives
without providing any preference information.

2.1.3. Confidence factor

The confidence factor pci is defined as the probability for an alternative to be the preferred one
with the preferences expressed by its central weight vector. It is computed as a multidimensional
integral over the criteria distributions as follows,

pci =

∫
ξ∈χ:u(ξi,wc

i )≥u(ξk,wc
i )
fχ(ξ) dξ. (8)

Confidence factors can be calculated similarly for any given weight vectors. The confidence
factors measure whether the criteria measurements are accurate enough to discern the efficient
alternatives. If the problem formulation is to choose an alternative to implement, the ones with
low confidence factors should not be chosen. If they are deemed as attractive ones, more accurate
criteria data should be collected in order to make a reliable decision.
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Figure 2. The feasible weight space of a 3-criteria problem with complete ranking of the weights.

2.1.4. Preference information

In most decision-making problems it is possible to elicit some, though probably imprecise and
uncertain, preference information from the DMs. Although SMAA allows preference information
to be represented with an arbitrary density function, usually it is easier to elicit the preferences as
constraints for the weight space. Then the density function is defined with a uniform distribution
in the restricted weight space W ′ as

fW ′(w) =

{
1/vol(W ′), if w ∈W ′,
0, if w ∈W \W ′.

(9)

Figure 2 illustrates the feasible weight space of a 3-criteria problem with complete ranking of
the weights.

2.1.5. Ordinal measurements

SMAA-O (Lahdelma et al. 2003) extends SMAA to consider ordinal criteria measurements,
meaning that the DMs have ranked the alternatives according to each (ordinal) criterion. In
SMAA-O, the ordinal information is mapped to cardinal without forcing any specific mapping.
This means that nothing is assumed about the cardinal rank values in the piecewise linear
mapping.

The ordinal criteria are measured by assigning for each alternative a rank level number rj =
1, . . . , jmax, where 1 is the best and jmax the worst rank level. Alternatives considered equally
good are placed on the same rank level and the rank levels are numbered consecutively. On an
ordinal scale, the scale intervals do not contain any information, and should be therefore treated
as such without imposing any extra assumptions. However, some mapping can be assumed
to underlie the ordinal information. In SMAA-O, all mappings that are consistent with the
ordinal information are simulated numerically during the Monte Carlo iterations. This means
generating random cardinal values for the corresponding ordinal criteria measurements in a way
that preserves the ordinal rank information. Figure 3 illustrates a sample mapping generated in
this way.
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Figure 3. An sample ordinal to cardinal mapping of SMAA-O.

2.2. SMAA-TRI

ELECTRE TRI (Yu 1992) is a method for sorting problem statements, where the alternatives are
to be assigned to pre-defined and ordered categories. SMAA-TRI (Tervonen et al. 2009) extends
it to allow uncertainty on the parameter values. Let us denote by C = {C1, . . . , Ch, . . . , Ck} the
set of categories in ascending preference order (C1 is the “worst” category). These categories
are defined by upper and lower profiles, that are computationally equivalent to alternatives. The
profiles are denoted as p1, . . . , ph, . . . , pk−1. Profile ph is the upper limit of category Ch and the
lower limit of category Ch+1. Notice that the profiles are strictly ordered, that is they have to
satisfy

p1 ∆ p2 ∆ . . . ∆ pk−2 ∆ pk−1, (10)

where ∆ is the dominance relation (p1∆p2 means that p2 dominates p1). This dominance relation
needs to be interpreted in a wide sense, because the domination depends not only on the values
of components of the two profiles, but also on the values of thresholds. The outranking model
applied in SMAA-TRI applies three thresholds: preference threshold that describes the minimum
difference for an alternative to be at least as good as another with respect to a single criterion,
the indifference threshold for maximum difference considered to be insignificant, and the veto
threshold for minimum difference that is so large, that no matter what are the values for other
criteria, the alternative cannot be better than the other one. The actual preference model and
the assignment procedure are described in Tervonen et al. (2009). For the assignment procedure
an additional technical parameter, the lambda cutting level, has to be defined.

The input for ELECTRE TRI in SMAA-TRI is denoted as follows:

(1) Uncertain or imprecise profiles are represented by stochastic variables φhj with a joint

density function fΦ(φ) in the space Φ ⊆ R(k−1)×n. The joint density function must be
such that all possible profile combinations satisfy (10). Usually the category profiles are
defined to be independently distributed, and in this case the distributions must not overlap.
For example, if the profile values for a criterion are normal distributed, the distributions
must have tails truncated as shown by the vertical lines in Figure 4.

(2) The lambda cutting level is represented by a stochastic variable Λ with a density function
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Figure 4. Probability distribution functions for three normal distributed profile values (for a single criterion) in SMAA-TRI.
The vertical lines show where the tails of the distributions must be truncated.

fL(Λ) defined within the valid range [0.5,1].
(3) The weights and criteria measurements are represented as in SMAA-2.
(4) The data and other parameters of ELECTRE TRI are represented by the set T =
{M, q, p, v}, where q, p and v are the model indifference, preference and veto thresholds.
These components are considered to have deterministic values.

SMAA-TRI produces category acceptability indices for all pairs of alternatives and categories.
The category acceptability index πhi describes the share of possible parameter values that have
an alternative xi assigned to category Ch. Let us define a categorization function that evaluates
the category index h to which an alternative xi is assigned by ELECTRE TRI:

h = K(i,Λ, φ, w, T ), (11)

and a category membership function

mh
i (λ, φ,w, T ) =

{
1, if K(i,Λ, φ, w, T ) = h,

0, otherwise,
(12)

which is applied in computing the category acceptability index numerically as a multi-
dimensional integral over the finite parameter spaces as

πhi =

∫ 1

0.5
fL(Λ)

∫
φ∈Φ

fΦ(φ)

∫
w∈W

fW (w)mh
i (Λ, φ, w, T ) dw dφ dΛ. (13)

The category acceptability index measures the stability of the assignment, and it can be inter-
preted as a probability for membership in the category. If the parameters are stable, the category
acceptability indices for each alternative should be 1 for one category, and 0 for the others.

2.3. Model generation with SMAA

The SMAA-2 ranking problem consists of a set of alternatives that are evaluated based on a set of
criteria. These are aggregated with the preference model to construct a complete pre-order of the
alternatives. The partial value functions are scaled with weights that are defined as importances
of scale swing from the worst to the best criterion performances (Belton and Stewart 2002).
Therefore the weights (and even the partial value functions if not assumed linear) can only be
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defined when all the decision alternatives are known, and in cases where the alternatives are not
known beforehand (e.g. they are generated from a database) the model generation cannot be
completely automated. For example, consider a repeated evaluation problem of ranking suppliers
performances: when another supplier with a criterion performance outside the interval hull of
performances of the existing ones becomes available, the weights have to be re-elicited based on
the modified scale swings. The following section illustrates model generation with an application
of SMAA-2 in drug benefit-risk analysis.

3. Application: drug benefit-risk analysis

Drug benefit-risk analysis is done daily by health care professionals, such as regulators, prac-
ticing physicians, and employees of insurance companies, to evaluate the safety and efficacy of
different medical compounds. The benefit is often evaluated as the efficacy of a compound over
an active comparator or placebo. The risks can be defined as increase in the amounts of Adverse
Drug Reactions (ADRs). Tervonen et al. (2011) proposed to apply SMAA-2 in drug benefit-risk
assessment. In their example application, the model was constructed for a set of second gener-
ation antidepressants. The criteria considered were efficacy defined as the treatment response
(benefit criterion) and the most common adverse drug events (risk criteria). All criteria were
measured in the original clinical trial as incidence rates.

The observed incidences were considered to be realizations from binomially distributed vari-
ables, and by assuming their independence, the criteria performances were modeled with Beta
distributions estimated through a Bayesian approach. Linear partial value functions were used,
and their ranged defined as interval hulls (i.e. the smallest interval containing all) of the Beta
distributed measurements for that criterion. Then, an expert in the field was asked to provide
ordinal weight information (ranking of the scale swings) by considering two scenarios: mild and
severe depression. In addition a preference-free model was used to quantify preferences support-
ing each treatment to be the preferred one.

The information flow of this case is presented in Figure 5. Note that when linear partial value
functions are assumed, only two inputs are required from the DM: selection of the relevant
outcomes (=criteria), and ranking of the scale swings. As can be seen from Figure 5, preference
elicitation can only be made after partial value functions have been constructed, and therefore
a usable decision support system for clinical trial evaluation through MCDA must include a
model generation subsystem. Such an approach has been taken in the ADDIS software that uses
JSMAA for the computation of its benefit-risk models (van Valkenhoef et al. 2012).

4. JSMAA

JSMAA (www.smaa.fi) supercedes CSMAA that was developed partly to support application of
SMAA-TRI in nanomaterial risk assessment (Tervonen et al. 2009). The development continued
to enable application of SMAA-2 in drug benefit-risk assessment as described in the previous
section. JSMAA was always developed independently of any application and thus enables the use
of SMAA methodology in other contexts well. Currently (as of version 0.8.4) JSMAA implements
SMAA-TRI for sorting problems and SMAA-2 for ranking with multi-attribute value/utility
theory. JSMAA computations are made with 10 000 Monte Carlo iterations, leading to a ±1%
accuracy (with 95% confidence) for the computed rank/category acceptability indices (Tervonen
and Lahdelma 2007).

The standard decision process of using JSMAA is illustrated in Figure 6. The process begins
with the DM defining the alternatives and then the criteria, or vice versa if a value-focuced de-
cision paradigm (Keeney 1996) is more suitable. Then (imprecise) measurements must be input.
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Figure 5. Model generation in application of SMAA-2 for drug benefit-risk analysis.

The following steps depend on the method. For SMAA-TRI the profiles and their measurements,
criteria thresholds, and the lambda cutting level must additionally be input, and the decision is
aided through the category acceptability indices. SMAA-2 can be used with or without weight
information; if no weight information is used, the preferences supporting each alternative can
be described with central weight vectors and their certainty assessed through confidence factors.
The SMAA-2 rank acceptability indices can be used to assess imprecision of the ranking irre-
spective whether or not weight information is incorporated into the model. After the relevant
indices have been inspected, the DM should assess whether the provided information is sufficient
for taking the decision. Note that “sufficient” here is very subjective - it is up to the DM to
decide whether e.g. a 80% first rank acceptability is sufficient precision to choose the alternative
for implementation or if a higher acceptability is desired. If the indices are deemed sufficiently
precise, the process can be terminated with decision recommendations. If not, the decision prob-
lem formulation in terms of included criteria and alternatives should be inspected. If new ones
are to be added or some old ones removed, the process should be iterated in order to e.g. also add
measurements for the new alternatives. In case the formulation is appropriate but the indices do
not provide sufficient discrimination of the alternatives, the criteria measurements, preference-
and technical parameters can be defined more exact. Note that the actual model definition does
not have to be made in a linear manner, but e.g. the lambda interval can be input before the
preferences.

The criteria measurements can be defined as exact real values or imprecise as intervals, ordinal
ranks, or as normal (Gaussian), log-normal, logit-normal, or beta distributed. For normal and
logit-normal distributed measurements also a relative version of the distribution is available,
that contains an alternative-specific part and a baseline common for all alternatives on a single
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Figure 6. The standard JSMAA decision support process as a UML state diagram.

criterion (van Valkenhoef et al. 2011). JSMAA supports exact, imprecise linear constrained
(interval) or ordinal preference information (weights). In case of SMAA-TRI, preference- and
indifference thresholds are supported, and their values can be exact or disjunct intervals. The
SMAA-TRI lambda cutting level is input as an interval. The required inputs and the provided
outputs are described in Table 1.

Note that the decision process presented in Figure 6 does not include execution of the simu-
lations. JSMAA tries to minimize the required amount of user interaction, and uses a separate
thread to run the simulations in background whenever the model changes. In practice the sim-
ulation overhead is often unnoticeable to the user.
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Table 1. Inputs and outputs of the methods implemented in JSMAA

Method Inputs Outputs
SMAA-2 Alternatives, criteria, Rank acceptability indices,

criteria measurements, central weight vectors, confidence factors
weight information

SMAA-TRI Alternatives, criteria, categories, Category acceptability indices
criteria measurements
(both for alternatives and profiles),
thresholds, weight information,
lambda interval

4.1. User interface

The user interface of JSMAA is divided in two panels. On the left panel is a tree view of the
model and the results. A panel on the right side shows details for the model element or results
that are currently selected in the left tree. Figure 7 presents1 the layout when the category
acceptability indices of a SMAA-TRI model are selected. Note the lambda-slider in the bottom
of the screen. Whereas the other parameters of the model (criteria measurements, preferences)
are input in their corresponding screens, the lambda cutting level is separated to the bottom tool
bar to allow easily experimenting how the results change with (imprecise) values for the technical
parameter lambda. When the lambda value is changed, the whole simulation is automatically
re-run (as is the case with changing other parameters of the model).

The criteria measurements can be input simultanoeusly for all criteria as shown in Figure 8.
The partial value functions are displayed only for SMAA-2 models. Note that JSMAA currently
supports only linear partial value functions. Preferences (weight information) can be input as
either exact values, weight intervals, or ordinal (ranking) of weights. Figure 9 presents input of
ordinal weight information. For SMAA-2 models, the scale swing of the partial value functions
should affect the weights, so it is presented in the weight input pane.

All results are presented in tabular format and visualized with charts. SMAA-TRI category
acceptability indices and SMAA-2 rank acceptabilities are presented with bar charts (see Figure 7
for the case of SMAA-TRI). SMAA-2 central weights and confidence factors are presented in the
same table due to their close relation. Central weights are visualized with a line chart as shown
in Figure 10. The datasets of all results’ figures can be exported as GNUPlot1 scripts for easy
use in paper publications.

4.2. Architecture

In order to support integration with external systems, JSMAA is split in three different modules:
the library containing all code for the models and their computation (jsmaa-lib), the re-usable
graphical user interface components such as the results pane in Figure 7 and weight input pane in
Figure 9 (jsmaa-gui), and rest of the program code (jsmaa-main). External open source libraries
are used for general functionalities such as graph drawing, thread scheduling, and user interface
components.

JSMAA is implemented in Java and therefore it is usable in all major operating systems
(including Linux, Mac OS X, and Windows). Although it is currently the most mature SMAA
implementation, it is far from complete, and extra effort has been made to allow new developers
to continue the work (cf. www.smaa.fi/jsmaa.php). The source code is openly available in a
repository at http://github.com/tommite/jsmaa. We hope that new developers would join

1All screenshots are from JSMAA v0.8.4
1http://gnuplot.info
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Figure 7. SMAA-TRI category acceptability indices in JSMAA.

development to add new features, especially graphical user interface components that would
make the software more usable for those not familiar with MCDA.

4.3. Model generation

JSMAA enables model generation programatically (direct integration with jsmaa-lib and jsmaa-
gui) or by writing JSMAA model files in XML. Currently a proprietary XML format is used, of
which an example is given in Listing 1. For more examples, see the sample models within the
distribution package of JSMAA.
Listing 1 Example JSMAA XML file format. Only one alternative, criterion, and ordinal preference statement (criterion rank) is

shown.

<SMAA−2−model name=”BR−Analys i s ” modelVersion=”2”>
<a l t e r n a t i v e s>
<a l t e r n a t i v e id=”0” name=” Venla fax ine 0 .0 mg/day”/>
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Figure 8. Input of criteria measurements in JSMAA.

. . .
</ a l t e r n a t i v e s>
<c r i t e r i a>
<c r i t e r i o n c l a s s=” c a r d i n a l C r i t e r i o n ” id=”3” name=”HAM−D”>

<ascending value=” true ”/>
</ c r i t e r i o n>
. . .

</ c r i t e r i a>
<measurements>
<measurement>

<c r i t e r i o n c l a s s=” c a r d i n a l C r i t e r i o n ” r e f=”3”/>
<value c l a s s=” beta ” alpha=” 52 .0 ”

beta=” 46 .0 ” min=” 0 .0 ” max=” 1 .0 ”/>
<a l t e r n a t i v e r e f=”0”/>

</measurement>
. . .

</measurements>
<p r e f e r e n c e s c l a s s=” o r d i n a l P r e f e r e n c e s ” id=”7”>
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Figure 9. Input of ordinal weight information in JSMAA.

Figure 10. Visualization of SMAA-2 central weight vectors in JSMAA.
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<p r e f e r e n c e>
<c r i t e r i o n c l a s s=” c a r d i n a l C r i t e r i o n ” r e f=”3”/>
<value c l a s s=”rank” rank=”1”/>

</ p r e f e r e n c e>
. . .

</ p r e f e r e n c e s>
</SMAA−2−model>

5. Conclusions

The lack of impact of MCDA in managerial practice is partly caused by the current implementa-
tion of MCDA methods – in proprietary software that is hard to integrate to existing information
systems. Open source software and model generation can enable wider application of MCDA in
new fields where the decision alternatives or criteria are generated as part of the decision support
process. Most of current MCDA software do not provide an interface for integration with exter-
nal systems, and therefore there exists a need for design and implementation of more modular
MCDA components.

Such components can be built top-down, through an implemention of a complete method
and provision of an interface for the model initialization and results visualization. This paper
described a software build in such a way, JSMAA, implementing the SMAA-2, SMAA-O, and
SMAA-TRI methods. Another approach is to design the components bottom-up as promoted
by the Decision Deck Diviz platform (www.diviz.org). In Diviz, small algorithmic components
communicating through an XML data standard, XMCDA, are combined to form workflows that
represent MCDA methods. The bottom-up approach allows for more interactive in-depth analysis
of different parts of the methods, and it seems quite suitable for educational purposes. Whether
it is a proper way to design components providing interface for integration in domain-specific
decision support systems is questionable. However, when XMCDA matures, it could become the
MCDA data exchange standard enabling MCDA model sharing even across monolithic systems.

The learning experienced by the decision makers with multi-criteria analysis is considered by
many experts as one of the major advantages of MCDA, and this should be taken in consideration
when designing user interfaces for MCDA software tools. The model construction is dependent
on the method, which has implications on how the decision makers’ preference structures can
and should be elicited. Care needs to be taken when MCDA components, such as the library of
JSMAA, are used in domain-specific decision support systems: prerequisites of the chosen method
(such as the meaning of weights, cf. Choo et al. 1999) need to be met. However, reasoning that
only an MCDA expert is able to construct mathematically correct models should not be used as
an excuse to refrain from developing usable and open MCDA software.
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